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Introduction

e Deep neural network has achieved good performance by utilizing labeled data
e Labels for data we are interested in (target domain) might not be available

e Can we use labeled data from different domains (source domain)?
o Data distribution between source and target data is different (domain shift)
o lllumination, pose, image quality can cause domain shift
o Performace degrades
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Introduction

e Unsupervised domain adaptation aims to bridge the gap between source and
target data/domain by matching their distribution

e Goal
o Learn a cross domain representation of data
o Transfer knowledge from source to target domain
o Learn a classifier that generalizes well on target domain

e \We will focus on adversarial based unsupervised domain adaptation

Blue points: source domain features
Red points: target domain features (a) Non-adapted (b) Adapted



Overview

e Generative adversarial network(GAN) has great success on estimating
generative models with adversarial training

e The adversarial process of GAN can be applied to domain adaptation task
o A feature extractor extracts the data distribution

o A domain classifier D distinguishes whether the data distribution comes from source or target
domain
o Learn a domain invariant feature eventually

e GAN vs Gradient reversal laver(GRL) based architecture
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Overview

e Label classifier
Given a feature, label classifier classifies its label

O
Minimize label classification loss (Cross entropy loss)

(@]

e Domain classifier
Assume inputs from source domain and target domain have labels 1 and O respectively

O
o Given a feature, domain classifier classifies which domain the feature comes from
o Minimize domain classification loss (Binary cross entropy loss)
e Feature extractor f oL,
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o Minimize the label classification loss
o Maximize domain classification loss
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Unsupervised Domain Adaptation by Backpropagation



http://proceedings.mlr.press/v37/ganin15.pdf

Overview

e Gradient reversal layer
o Forword: GRL is an identity transformation
o Backward: GRL takes gradient from subsequent layer and multiply by constant -w and pass to
previous layer

Switching between submodules | Drawback

GAN | yes Need to decide how many iteration of
training G and D

GRL | No Gradient vanishing, need to decide w




Adversarial Based domain adapation

e GRL
o Collaborative and adversarial network for unsupervised domain adaptation (Spotlight)
e GAN

o Maximum classifier discrepeancy for unsupervised domain adaptation (Oral)
o Detach and adapt: Learning cross domain disentangled deep representation (Spotlight)
o Learning from synthetic data: Addressing domain shift for semantic segmentation (Spotlight)

Accepted papers

B DA papers

CVPR15 CVPR16 CVPR17 CVPR18 CVPR19



Collaborative and adversarial network for unsupervised domain adaptation

e DNN tries to learn domain invariant feature at the final layer

o All the features are learned to be domain invariant

e Motivation

o Low level details (corner and edges) are useful to represent features in different domains
o Learn domain variant feature in low level layers (informative / collaborative learning)
o Learn domain invariant feature in high level layers (uninformative / adversarial learning)
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Collaborative and adversarial network for unsupervised domain adaptation

e Proposed methods and novelty
o The optimal combination of multiple domain classifiers (each D has different w)
m Low level features should be domain variant: w > 0
m High level features should be domain invariant: w < 0
o lteratively incorporate target data to training set with psuedo label
m High class prediction confidence
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Detach and adapt: Learning cross domain disentangled deep representation

Transfer

e Motivation
o Can machine imagine same image with different attribute? r\
m Representation disentanglement Disentangle <~ Disentangle
o Can machine transfer attribute across domains? fom ‘L" ey
Photo ~~ Cartoon

m Cross domain representation
e Proposed method and novelty

o Representation disentanglement for cross domain data
o Share weight in higher layer in G and D to bridge the gap in high level representation
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Detach and adapt: Learning cross domain disentangled deep representation

e Proposed method and novelty
lan

o Auxiliary classifier in Dc to maximize the mutual information between assigned |

generated images
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Detach and adapt: Learning cross domain disentangled deep representation




Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation

e Motivation

(@)

(@)

Previous DA approaches mostly focus on classification task and does not tailor for segmentation task
Labels are even harder to obtain in image segmentation task
e Proposed method and novelty

Adapt the representation learned by segmentation network across synthetic and real domains
Adversarial loss were calculated on image space (better performance) instead of feature space

(@)
(@)
o Fistrained to extract domain invariant feature
o
DA
° 6
sn..;1: Update D Step 2: Update G Step 3: Update C, F
Type Variants Description
L; 4, p | Classify real source input as src-real; fake source input as src-fake
Within-domain | L, ~ Classify fake source input as src-real
tio.D Classify real target input as rgt-real; fake target input as tgt-fake
Ltic Classify fake target input as gr-real
Cross-domain | L7, Classify fake source input as real target (1gt-real)

[4
Eudv.F

Classify fake target input as real source (src-real)

c L e g : Pixelwise classification loss
° L. : Pixelwise reconstruction loss
° Ladv: Pixelwise adversarial loss

° L 11+ Auxiliary segmentation loss

Test phase
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Maximum classifier discrepeancy for unsupervised domain adaptation

e Previous approaches use domain classifier to force generator to generate
domain invariant features

e Motivation

o Generated target feature can be closed to the classifier’'s boundary
o Relationship between decision boundary and target data should be considered
o Align source and target distribution using task-specific decision boundaries

Previous method Proposed method
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Maximum classifier discrepeancy for unsupervised domain adaptation

e Proposed method and novelty

o Training procedure
m Train G, F1, F2 until they can classify source data correctly
m Train F1, F2 to maximize discrepancy on target data (Fix G)
m Train G to minimize discrepancy (Fix F1, F2)
m Repeatstep2and3

o Use 2 classifiers from one network as discriminator and force G to avoid generating features

close to decision boundaries (novel training method)

Loss Function

Maximize Discrepancy Minimize Discrepancy Obtained Distributions
12 Source

I1x1x4096 1x1x l(lif)ll

L1: Lr'russrnll‘opy (Pl ) l],)

/ 28 x 28X BI2 “74: 71' 5 L2: erussmnfrop_t/(p27 .I/.s-)
& Ve iar T W
7
[ﬁ. =T Target
12 ! 1
1218090 1x1x10 ¢ D: —|p1—p2ls Source  Target Discrepancy ~ Task-specific Classifier
K Class A |‘:'"-~:' IO
IS W —*n
d' Class BI‘\ _JIO
iscrepancy



Reference

Unsupervised domain adaptation via backpropagation

Collaborative and adversarial network for unsupervised domain adaptation

Maximum classifier discrepeancy for unsupervised domain adaptation

Detach and adapt: Learning cross domain disentangled deep representation

Learning from synthetic data: Addressing domain shift for semantic segmentation

Deep Visual Domain Adaptation: A Survey

https://github.com/zhaoxin94/awsome-domain-adaptation
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